

## IMPROVEMENTS IN OXYGEN CONSUMPTION AT VENTILATORY THRESHOLDS ARE LIMITED BY ITS PROXIMITY TO VO<sub>2</sub>MAX

BENÍTEZ-MUÑOZ, JA.<sup>1</sup>, CUPEIRO, R<sup>1</sup>. AND GARCÍA-ZAPICO, A<sup>2</sup>.

<sup>1</sup> LFE RESEARCH GROUP, DEPARTMENT OF HEALTH AND HUMAN PERFORMANCE. FACULTY OF PHYSICAL ACTIVITY AND SPORT SCIENCE (INEF). UNIVERSIDAD POLITÉCNICA DE MADRID. CALLE MARTÍN FIERRO 7, 28040 MADRID, SPAIN. <sup>2</sup> IMFINE RESEARCH GROUP. DEPARTMENT OF HEALTH AND HUMAN PERFORMANCE. FACULTY OF PHYSICAL ACTIVITY AND SPORT SCIENCE (INEF). UNIVERSIDAD POLITÉCNICA DE MADRID. CALLE MARTÍN FIERRO 7, 28040 MADRID, SPAIN

**OBJECTIVE:** It is traditionally assumed that in order to conduct high-intensity sessions, it is necessary to develop an “aerobic base” (1). However, this statement does not appear to be supported by scientific evidence. In fact, the best approach to obtain the maximum development of the oxygen consumption at the ventilatory thresholds 1 (VO<sub>2</sub>VT1) and 2 (VO<sub>2</sub>VT2), and maximum oxygen uptake (VO<sub>2</sub>max) remain poorly understood. The purpose was to determine whether the threshold position [VO<sub>2</sub>VT1 and VO<sub>2</sub>VT2 relative to VO<sub>2</sub>max (%VO<sub>2</sub>maxVT1 and %VO<sub>2</sub>maxVT2, respectively)] before training was associated with the improvement with training in VO<sub>2</sub>VT1 and VO<sub>2</sub>VT2 ( $\Delta$ VO<sub>2</sub>VT1 and  $\Delta$ VO<sub>2</sub>VT2). Additionally, to determine whether VO<sub>2</sub>VT1 and VO<sub>2</sub>VT2 before training was associated with the improvement with training in VO<sub>2</sub>VT1 and VO<sub>2</sub>VT2 ( $\Delta$ VO<sub>2</sub>VT1 and  $\Delta$ VO<sub>2</sub>VT2). **METHODS:** Fourteen males (20±1.9years; 68.6±1.9kg; 70.9±5.5ml/kg/min) performed an incremental test before and after the first three-month mesocycle of the season. The test started with 1 min at rest, followed by 3 min warm up at 50 W. Consequently, the load increased 5 W every 12 s until task failure. Expired gases were measured using a gas exchange analyser (Jaeger Oxycon Pro, Germany). VT1 and VT2 were determined as previously described (2). The following variables were measured: VO<sub>2</sub>VT1, VO<sub>2</sub>VT2, VO<sub>2</sub>max, %VO<sub>2</sub>maxVT1 and %VO<sub>2</sub>maxVT2. The difference in VO<sub>2</sub>VT1, VO<sub>2</sub>VT2, %VO<sub>2</sub>maxVT1 and %VO<sub>2</sub>maxVT2 before and after the training program ( $\Delta$ VO<sub>2</sub>VT1,  $\Delta$ VO<sub>2</sub>VT2,  $\Delta$ %VO<sub>2</sub>maxVT1 and  $\Delta$ %VO<sub>2</sub>maxVT2, respectively) was calculated. **RESULTS:**  $\Delta$ VO<sub>2</sub>VT1 was inversely correlated with %VO<sub>2</sub>maxVT1 before training ( $r=0.584$ ;  $p=0.028$ ) and  $\Delta$ VO<sub>2</sub>VT2 with %VO<sub>2</sub>maxVT2 before training ( $r=0.54$ ;  $p=0.046$ ). In contrast,  $\Delta$ VO<sub>2</sub>VT1 was not correlated with VO<sub>2</sub>VT1 before training ( $r=-0.497$ ;  $p=0.071$ ) nor  $\Delta$ VO<sub>2</sub>VT2 with VO<sub>2</sub>VT2 before training ( $r=-0.091$ ;  $p=0.758$ ). **CONCLUSIONS:** The key finding is the inverse relationship between %VO<sub>2</sub>maxVT1 and %VO<sub>2</sub>maxVT2 before training with the improvements with training in VO<sub>2</sub>VT1 and VO<sub>2</sub>VT2, respectively. That is, those individuals with a lower threshold position before training, suffered a greater improvement with training in oxygen uptake at thresholds, regardless VO<sub>2</sub>VT1 and VO<sub>2</sub>VT2 before training. It seems that VO<sub>2</sub>max limits the improvements in VO<sub>2</sub>VT1 and VO<sub>2</sub>VT2 in those individuals with a higher %VO<sub>2</sub>maxVT1 and %VO<sub>2</sub>maxVT2 before training (ceiling effect of VO<sub>2</sub>max on VO<sub>2</sub>VT1 and VO<sub>2</sub>VT2). **PRACTICAL APPLICATIONS:** As a practical application, we can say that the threshold with a lower position (i.e., lower %VO<sub>2</sub>maxVT1 or %VO<sub>2</sub>maxVT2) should be prioritized, independently of the oxygen consumption at thresholds (VO<sub>2</sub>VT1 or VO<sub>2</sub>VT2).

### REFERENCES:

1. Casado, A., F. González-Mohino, J. M. González-Ravé, and C. Foster. Training periodization, methods, intensity distribution, and volume in highly trained and elite distance runners: A systematic review. *Int J Sport Physiol Perform* 17:820-833, 2022.
2. Rabadán, M., V. Díaz, F. J. Calderón, et al. Physiological determinants of speciality of elite middle- and long-distance runners. *J Sports Sci* 29:975-982, 2011.

**FUNDING:**

There is no funding.

**CORRESPONDENCE ADDRESS (PRESENTING AUTHOR):**

José Antonio Benítez Muñoz: [joseantonio.benitez.munoz@upm.es](mailto:joseantonio.benitez.munoz@upm.es)